Soil and Rock Classification.
For purposes of foundation engineering, current design methods for determining the axial capacity of deep foundations generally classify soil and rock into five types (note that the following definitions are for foundation engineering, not for geology or other purposes). The five classifications for soil types are:
- Cohesive soils, including clays and cohesive silts.
- Cohesionless soils, including sand and gravels of moderate density.
- Cohesive intermediate geomaterials. This soil type consists of cohesive materials that are too strong to be classified as cohesive soils and too weak to be classified as rocks. It includes saprolites, partially weathered rocks, claystones, siltstones, sandstones, and other similar materials.
- Cohesionless intermediate geomaterials. This soil type consists of highly compacted granular materials, including very tight sand and gravel; naturally cemented sand and gravel; very tight mixtures of sand, gravel, and cobbles; and glacial till. Excavation in cohesionless intermediate geomaterials usually requires heavy equipment, specialized tools, and occasional blasting.
- Rock includes all cohesive materials that are too strong to be classified as cohesive materials. Rock types are further classified according to their mineralogy, fracture pattern, and uniformity.
This same classification of soil types can be used for the design of foundations subjected to lateral loading. It is used to describe the soil types, but additional information on the position of the water table and the results of shear strength testing in the laboratory or field are also needed so that the proper load-transfer models can be selected by the foundation engineer.
0 comments:
Post a Comment